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CHAPTER 1

INTRODUCTION

The need for ever more sophisLicated multi-target algorithms has in-

creased greatly in recent years. In military applications, especially, the

need for these techniques is evident. Recently, there has been increased

interest in distributed tracking systems, in which the tracking problem is

broken down into several smaller problems and distributed to trackers at

several different sites. Such problems, of course, present more challenges

than the more traditional central processing tracking systems.

The basic problem in multi-target tracking is data association. IfF there are several (perhaps an unknown number of) targets in un area, Ineas-

urements are received from each of them. There exists an uncertainuy in

the true origin of each measurement. Essentiilly, any mnulti-target track-

ing procedure should partition the measurements into sets associated with

each target before the tracking of that target can be done.

Several important papers that have appeared in recent years come to

grips with this problem in a variety of ways. Bar-Shalom L31 gives an ex-.

q= !"cellent survey of recent work in the field. The most important paper for

this work is the one by Donald Reid [8). Reid formulates hypotheses of the

origin of measurements sequentially, and organizes them in the form of a

hypothesis tree. For each hypothesis constructed, a set of Kaiman filters

is constructed to track the targets implied by that hypothesis. The

strength of the hypothesis is then evaluated by comparing the actual weas-

l ~4
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uremeits with predicted values obtained from the state edtimates of the

filters. A specific formula for this is developed by Reid, and incor-

porates false alarms and new targets.

Reid assumes in his work a central processina system - that is, a sys-

tern in which all tracking computations are done at a single site. The goal

of this work is to apply Reid's ideas to a distributed processing system.

As we shall see, the data association and target tracking can be separated

quite naturally to fit in the mold of such a system. Our primary example

will be a two node passive system that receives bearings to targets as

measurements. The information signal is assumed to be acoustic in nature,

which in combination with a desire to track fast moving targets improves

the problems of propagation delay.

Chapter 2 develops the theoretical structure of the proposed tracking

algorithm in greaLt detail. in Chapter 3, we discuss the concepL of a Dis-

tributed Sensor Network (D0N), which motivates thv choice ofi our primary

example. Chapters 4 and 5 develop the mathenatical formulations necessary

for the implementation of' the tracking algorithm. Finally, in Chapter 6,

we presert some demonstrations of the performanLue of the algorithm.

i--



CHAPTER 2

THE ALGORITHM

In this chapter, we will model the solution of a generalized tracking

problem, and see how previous work in multi-target tracking fits into this

model.

2.1 SOME DEFINITIONS

Consider a generalized tracking system T. The task of T is to deter-

mine the existence of and track certain objects located in a specified en-

vironment E. The objects are called targets. The system tracks a target

if it can estimate its position and velocity at any time while it is locat-

ed in E. A tracking system may also 'determine acceleration anJ other

higher positional derivatives; however, for our purposes, position and

velocity will be sufficient. This information is colletively called the

target state,

To perform its task, the tracking system must obtain information from

the environment. Usually, this information is in a form termed signals.

For example, a radar system might use electroiagnetic sinusoids, whereas in

sonar, the signals are acoustic. Any place within T that receives signals

is called i sensor. If the received signals originated in T and were re-

flected back, T is called ;,n active system. If the signals oridinated in

thu environment, T is a pa•sive system. It may happen that the system re-

ceives both types of signals, in which case T is referred to as a mixed

i i -7-
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system. Active systems generally obtain more information from the environ-

ment than passive systems; however, they are also more susceptible to

detection by the targets themselves. A tracking system can also be classi-

fied by the manner in which it collects signals. Our attention will focus

on time-sampling systems, which sample signals from all directions at

specified instants of time.

Usually, the received signals in their original form are not very use-

ful for tracking. A signal processor in T extracts data from the signals

which can be used in tracking. In this work, data obtained in this manner

from signals are termed measurements. Measurements may be scalar or vector

in nature. For example, a measurement from a radar system might consist of

three position coordinater. A measurement from a passive system, on the

other hand. might simply be a bearing. In tiuie-sdjmpling systems, a scan is

defined as a set of measurements obtained at the swae titne-sampling in-

stant. In many systems, a signal processer requires signals from several

different sensors to produce a single measuremnent. Normally, this set of

sensors is fixed and is referred to collectively as a node. Since our at-

tention is focused on the tracking problem, we will not go into detail the

highly nontrivial problem of signal processing. Hence, all of our work

will refer to measurements and nodes at the lowest level.

2.2 - TilE TRACKIING PROBLEt1

In general, the tracking system must be able to track several targets

simultaneously. In multi-target tracking, there are really two problems

that mnusL be solved. They are the data association problem and the track

1 ....... .. . . . . ...~
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association problem. Logically, before a tracker can estimate the state of

a particular target, it must know which measurements to use. Given a

time-sequenced set of scans, the tracker must partition the set of all

measurements into a set of mutually exclusive subsets. One subset may

correspond to an assignment to no target at all. The measurements in this

set are called false alarms. The other subsets will correspond to hy-

pothesized targets. The process of forming these subsets is data

association, and each subset of measurements is called a data track.

There will be many different ways to perform data association on a given

set. Each such configuration is called a data hypothesis.

We will asssume in our work that scans are to be processed sequential-

ly. This is reasonable, since in a real-time system, it is usually desir-

able to incorporate new information as soon as possible. Therefore, at any

given time, the number of possible data hypotheses depends on the nur iber of

a priori hypotheses and the number of' weasurements in the present scan.

The sequential formation of hypotheses can be organized conceptually

"through the use of trees.

it The structure of hypothesis trees is best illustrated through a

specific example. Assumne a priori there are no data tracks. At time t=O,

the tracker receives two measurements. We make the sitplifying assumption

that a particular target cannot be the source of more than one measurement

5 in a given scan, although the more general case can still be displayed in

tree form. Thus, each measurement could be from a different legitimate

target or a false alarm. This results in four different. data hypotheses,

as shown in Fig. 2-1.

-- 9-



ml and m2 are the two measurements. As can be soen, each corresponds

to a different level of the tree. The locations within the tree

corresponding to the assignment of meusurements to a data track are called

nodes. (The use of this terms is unfortunate; however, it will always be

clear from context whether we are talking about groups of sensors or tree

structure.) A sequence of connected nodes is called a branch of the tree.

Each branch of the tree corresponds to a different data hypothesis, as

shown. Thus, hypothesis 1 assigns ml to data track 1 and m2 to data track

2, while hypothesis 3 assigns ml as a false alarm (represented by 0) and m2

to data track 2. We have made the convention of identifying a data track

by the measurement number of its first measurement.

Assume now that we have a second scan with two measurements (m3 and

m,4). The number of assignments of ma3 and m4 will depend on which prior hy-

pothesis is assumed. For instance, if hypothesis 1 is assumed, the possi-

ble assignments fc" each are data track 1, data track 2, a new data track,

or a false alarm, with the condition that both cannot be assigned to the

sane leiitimate data track. If hypothesis 4 is assumed, the only possible

assignments are a new data track or a false alarm. If we expand each

branch in this manner, we obtain Fig. 2-i, which represents the total

number of ways the measurements in the two scans can be associated, given

our assumptions. It is easy to see that the tree expands at an exponential

rate.

The above procedure for the construction of the hypothesis tree is

known as a measurument-oriented approach, because every possible data track

is listed for each measurement. A target-oriented approach would list

-10-
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every possible measurement for each data track. However, in taking the

latter approach, it is conceptually difficult to decide when a new data

track should be hypothesized, whereas ir .t former case, new data tracks

appear naturally as a part of tree expansion. For this reason, we will use

the measurement-oriented approach.

If there are mul iple nodes in the tracking system, te can perform the

data association in two ways. A centrel processing system would construct

* one hypothlesis tree, incorporating all measurements from every node in the

system. A distributed processing system would construct a tree for each

node or a subset 3f nodes. We can think of nesting the various trees in a

distributed processing system in one another to produce an overall data as-

sociation hypothesis tree that is equivalent to the tree constructed in a

central processing system, which contains all possible data tracks that can

ii be formed given the received measurements. With a distributed structure,

we encounter the track association problem.

The track association problem can also be modeled as a hypothesis

tree. Whereas data hypotheses associate measure:ments, track hypotheses as-

* sociate the data tracks of different nodes. Given a track hypothesis and

the data tracks it is conditioned on, we finally can combine the data to

form sets of estimated target states, or target tracks. (This assumes, of

course, that there are a sufficient number of' data tracks to make such an

estimnation possible; i.e. the system must be observable). The production

of these target tracks is the desired goal of the tracking system. Since

the track association trees are each conditioned on data hypotheses from

the various nodes of the system, we can nest the former into the overall

- 13-
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datva ssociation tree of the tracking system. The resulting structure or-

ganizes, in a systematic way, all possible solutions of the tracking prob-

The prospect of wading through such an imposing structure is horrify-

in&, at best. In the next sections we will discuss ways of making the

solution more tractable. These methods, of course, produce suboptimal.

results, in the sense that the correct solution may accidentally be dis-

carded. However, they are quite necessary for any ,iractical implementa-

tion.

- DATA HYPOTHESIS REDUCTION - TREE PRIJNING

The use of trees as a problvai-solviln technique is well knowr, in ar-

tificial intelligence. They arc used to systemautically model the step-by-

step solution of very general problems. As we have seen, they fit natural-

ly into the tracking problem. However, in most applications, there is a

well-defined "goal state", which will be reached eventually by onie of the

branches of the tree. In the tracking problem, there is no "goal state";

the trees are open-ended. Since the trees expand exponentially, we must

impose constraints on tree growth in order to keep the problem manageable.

Methods used for this purpose are called tree pruning techniques.

There are two ways to limit tree expansion. Tlhe breadth of the tree

can be limited by retaining no more than a specified maximum nu:tmber of

branches each time the tree expands. This "pruning" of branches of the

• .tree may result in one branch of an older scan being singled out. This is

- 14-
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illustrated in Fig. 2-3. In this case, the scan is said to be identified.

Scans will not always be identified by breadth constraints. Therefore, we

must also limit the dth of a tree. When the number of scans in a tree

atLains a certain maximum allowable number, one branch in the oldest scarl

is singled out and the others are pruned. This scan As thus forcibly iden-

tified. In limiting the depth of a tree, redundant hypotheses may appear
ii the tree, depending on the mechanism used. A set of redundant hy-

potheses in a depth limited tree assign measurements in the same manner.

They may assign measurements to exactly the same targets (in which case

they are termed identical) or there may exist a 1-1 mapping of targets

between the hypotheses. A set of redundant hypotheses may be combined

under the assumption that any past differences which have been dropped off

of the tree are insignificant. This is called hypothesis mergin . (A more

thorough treatment of the. foregoing concepts may be found in £6).)

In order to apply the above wethods, we must have some means of

measuring the strength of the various hypotheses. In other words, we must

define a probability measure on the set of branches of the tree. The par-

ticular definition and evaluation of a probability measure depends upon the

nature of the tracking system and the types of measurements. One observa-

tion can be made here, however. For data association trees, a natural de-

firnition of probability is one that is monotonically related to thz "cloce-

ness" of a measurement to the predicted value of a data track. The closer

a measurement is to a particular prediction, the higher the probability

: -, th.it the measurement is associated with the corresponding date track. This

use of predictors, arid the fact that we are using sequential processing,

:" - 15--
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suggests the use of Kalman filters. A detailed application of this idea

appears in Chapter 4.

The definition of this "closeness probability" leads to the concept of

clustering. (See Fig 2 - 4 ). Suppose a threshold is defined such that, dur-

ing tree expansion, any branch whose probability lies below this threshold

is pruned. We can think of drawing a "gate" around the predicted value of

each data track. The probability of a hypothesis below the threshold is

then equivalent to the present measurement falling outside the gate. By

considering only measurements inside the gate, we have effectively pruned

the tree of hypotheses with probabilities below a certain level. Suppose

now that the gates of various data tracks do not overlap. The scan can

then be partitioned into a nuinber of subsets, each subset containing the

measurements falling inside the gate of a different data track. Because

the possible data associations of each of these subsets are mutually ex-

clusive, we can break up the data associ.tion tree into a number of small-

er, independent trees. This is an enortnous simplification, for the sum of

all of the hypotheses in the sinaller trous will be much less than theI number of hypotheses in the tree which spawned them. For fixed resources,

t6his amounts to an increase in the number of hypotheses that can be con-

sidered simultaneously. If some of the gates do overlap, we can form one

tree for the cluster of the corresponding data tracks. There is still a

simplification in this case, although not as great. The concept of clus-

tering is important for our later work.

i -3
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I

2.4 - TRACK HYPOTHESIS REDUCTION - THE DELAYED N-SCAN ALGORITHM

The data association trees of different tracking systems are usually

quite similar in structure. The construction of trauk association trees

will vary widely with the tracking system. In some eases, the track asso-

ciation trees are degenerate, and tardet state estimates are a trivial

consequence of' data association. For instance, take the cose of a 3ingle

node, single target tracker that uses position measurements. Initial tar-

get states can be estimated u3ing only two measurements. In fact, the tar-

get state can be used in a Kalman filter to evaluate probabilities in the

tree. This formulation is precisely the "N-scan algorithm" developed by

Singer, Sea, and Housewright [9]. The term "N-scan" refers to the fact

that the hypothesis tree is depth-limited to 11-scans, and hypothesis merg-

in& is done over the past N-scans. A •enerrtlization to the multi-target

case was presented by Reid [6j. Here ai;ain, rget states are used for

probability calculations. Reid uses clustering in his algorithm as well as

an N-scan approach.

The generalization of these algorithms to a multi-node active system,

of course, requires the correlation of state estimates from different

nodes, and hence requires trees. However-, assuming that node estimates are

independent of one another, and that noise and target density are suffi-

ciently low, ambiguities will resolve themselves fairly rapidly. The case

is different for passive systems, which ure inherently multi-node in na-

ture. Even if it is possible to estimate target state from the measure-

inents of a single, passive node, the covariance =Atrix of such an estimate

;,;:.. ..-
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is usually so large that estiinýte is virtually useless. Correlation

between data tracks of different nodes in the system is thus necessary to

obtain good estimates.

Correlation of data tracks requires time, and so r jL'ction of track

association trees is a rather drawn out process. It would he desirable to
do as few of these operations as possible. This is the motivation for the

Sfollowing scheme, called the "delayed N-scan approach." Instead of con-

structing track association trees for each data association hypothesis

under consideration, we delay the construction until data tracks are deter-

mined in an U-scan algorithm on the oata association tree. In other words,

a measurement is not used in updating probabilities of track hypotheses un-

til the scan to which it belonr3s becomes identified in the data association

tree. This technique effuctively separates the d.ta association and track

associi~tion processes. The resulting benrefits are the suine as in employing

* cluster-in&, since the track association trees were originally nested in the

data association tree. The disadvantage, of course, ip that the incorpora-

tion of measurements into state estimates is delayed by the U-scan algo-

Srithm on the data association tree. It is the price paid for simplifica-

tionr of the problem. This procedure will be used in our application in

Chapter 3.

2.5 -OTHER WORK IN HULTITARGET TRACKING

Before leaving this chapter, we Nhould summarize previous work in tnul-

titar~et trackina and compare it to the approach taken here. An excellent

survey of multitarget tracking methods can be found irn a pa.per by Bar-

-19-
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Shalom f3].

All of the work in the literature focuses primarily on developing

techniques to resolve the uncertainty in the origin of received measure-

ments; i.e., the data association problem. The applications of these tech-

niques generally assume that target state estimates can be obtained direct-

ly from given sequences of measurements.

The approaches to the problem can be classified as Bayesian and non-

Bayesian. Non-Bayesian approaches do not take into account a priori infor-

ination. The early work of Sittler [10) typifies this approach. In his al-

gorithm, data association treas are formed in a similar manner as in our

algorithm, although this is not explicitly stated. Kalrman filters estimat-

ing target states are initiated and updat.-d directly by the given measure-

mients. The innovations of the filter of' iach branch are used to sequen-

tially compute a likelihood function. TargeL tracks whose likelihoods are

below a certain threshhold value are then rejected. A sumewhat different

technique developed by Morefield [7] minimizes the likelihood function by

transforming the problem into an integer programming problem. This pro-

duces the most likely set of target tracks given all of the data, but is a

batch processing technique.

Tw.,o observations can be made. The first is that the state estimates

and covariances are .conditioned on the corresponding data hypotheses being

true. However, no probability value is obtained for the data hypotheses

* themselves. This Is essentitilly due to the philosophy of the non-Bayesian

approach. The second observation is that, without a priori information, it

- 20 -
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is difficult to apply these algorithms in a distributed processing system,

because the data associatibn and track association are intertwined.

The Bayesian approacheds to the multitarget tracking problem attach to

each measurement a probability of being correct, based on a priori informa-

tion. The resulting target state estimates and covariances reflect the un-

certainty in the origin of the measurements. In [1), Bar-Shalom and Tse

deal with the single target case. Assuming a target state has already been

initiated, a gate can be formed around the estimated target state. For

each measurement that falls within the gate, a probability of being correct

is computed based on how close the measurement is to the estimate. These

measurements, weighted by their probabilities, are then used to update the

estimate. The resulting filter is called the probabilistic data associa-

tion filter (PDAF). This approach is target oriented in nature. As such,

it is difficult to incorporate initiilization of target tracks into the

scheme. The PDAF is extended to the multlturget case in [2]. However, the

scheme for computing probabilities is very complicated. In addition, the

application of these ideas to a distributed processing system would in-

crease enormously the amount of comnputation required. Because of this, and

our desire to include track initiation, we have rejected this approach.

* :The work of Singer at. al. L-J and Reid ([) has already been men-
J

. tioned. We have described the delayed Il-scan algorithm Ls d generalization

of Reid. It is probably more accurate to characterize it as a combination

of the Bayesian anw non-Bayesian approaches. In the sequ.l, we correlate

data tracks in the track association trees by computing a liklihood func-

Stion for c;ach track hypothesis. The target state estimation is conditioned

-21 -
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on a Pa(rticular dnte hypothesis (or hypotheses) being true. This is exact-

ly the non-Bayasian approach. However, the dati, hypotheses upon which

these target tracks are conditioned are obtained by a "pre-processor" which

employs a Bayesian N-scan algorithm similair to Reid's. Thus, although the

target state estimates do not reflect measurement origin uncertainty, they

are based on hypotheses that have been singled out in a Bayesian weeding

process.

2.6 - SUMMARY

In this chapter, we have defined some basic terrns and constructed a

inodel for the solution of the trocking problem. We have considered, in a

general setting, some useful techniques for rendering the model amenable to

practical implementation, and we have seen how sooie previous work in track-

in& fits into this model. In the next chapter, w6 present an application

of these ideas to a specific tracking system.

4'2
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CHAPTER 3

DISTRIBUTED SENSOR NETWORKS

The procedures developed in the last chapter are quite general in na-

ture. In order to demonstrate their utility, we need to have a specific

application. In this chapter, we will describe a general tracking system

called a Distributed Sensor Network. This tracking system will provide the

motivation for the example to which we shall apply our algorithm.

in principle, the more information a tracking syst-em can obtain from

the environment, the better it will be able to track targets. Active sys-

tems are almost always used in situations where maximum target information

is the only criteria or has absolute, priority. Most active systems, such

as radar, send a signal into the environment and receive reflected versions

of thosv signals, along with clutter from the environment. This operation

of reflection allows an ustimation of the time delay between transmission

and reception. Since the speed of propagation of the signal is assumed

* known, this is equivalent to a range estimate. Passive systems, on the

other hand, do not have this information, and hence must contain more sen-

sors and nodes than active systems to obtain equivalent information.

In many case3, however, maximum target information is not the sole

criteria, nor does it always have the hightst priority. Active systems

have the property that potential tr.rgets in the environment may be able to

detect the radiated signals. In wany cases, espacially in military appli-

cations, this detectability is i. major drawback, and the design of passive

" - 23 -



systems is desirablc.

DSN (Distributed Sensor Network) is a research project of MIT Lincoln

Laboratory. D3N is a multi-node surveillance system designed to detect,

locate, track, and identify low-flying aircraft. Although in actual prac-

tice the system may be a mixed one, with both active and passive sensors,

it turns out to be more fruitful to study a strictly passive system, since

the distributed processing and control probleias of large act. ,e systems oc-

cur in much sinaller passiie systems. In addition, in reference to detecta-

bility, it would be desirable for the system to be capable of carrying out

its functions using only passive sensors. Hence, we will view the DSN as

having a solely passive capability.

The new information input to the DSN are acoustic signals. Each node

of the DSN contains tn array of acous*tic sensors (probably hick quality mi-

* crophones). Each sensor samples the incoming signals at a specified rate

to obtain a digital sample set. After pre-determined intervals of time, the

* sampled signals from all sensors are input to the signal processing com-

ponent of the node. Fssentially, this component uses high resolution fre-

quency wavenumber analysis to detect phase differences in the signals,

Sthereby obtaining a direction. The output can be viewed as a curve plot-

tin& receivud sidnal power vs azimuth. An example plot is shown in Figure

Tthese power-azimuth curves, produced at given instants of time, are

the input data to the trucking systum. To keep things simple for our

models to come, we will use only the azimuthal inforwation. The power in-

-2--
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formnation could be useful in resolving ambiguities; however, We shall riot

consider, this role.

tie nre thus assuming that ef~ch node of thle D3hI has available. a sot o1f

azimnuths and variances of' those aizimuths at discret~e instants of' time. The

tracking problem is to Qombirie the azimuths fromn the nodes to produce tar-

get trucks. lie should keep ill mind that the nodes are geographically

dispersed and that the velocity of signal propagation is comtparable to tile

speed of potential targets. In addition, the measurement times at dif-

ferent nodes are not necessarily synchronous. Howe~ver, for s~iiplicity, we

shall ignore this last observation.

In a large scale DS14, it is obvious that a distributed processing

scheme is much more desiruble thain a central processing one. First ,all,

the large amiounts of !informnationi JiCtatL thatL it be hý.ri'Jlcd in pieces in

order to sort it out. Second, cornmuriiiation is 6gUacrally much slowar than

computution, and so for time efficiency, the cumpututional loud should be

distributed as much as possible. Communications also radiate power, which

is undesirable if' detectability is an issue.

Thus, it seems logical to do Lis much of the processing at individual

*nodes as possible. There is riot eriough information gathered by the node, to

produce independently a relioýble target track. However, it is possible for

the nhode to pe rfuorm its data ý-ssouiation independently of other nodes.

This is why we separated out data associution and traCk association in our

algori thm. It fits very naturally int-u the problem of distributing compu-

tational load in a trucking system.

-26
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To produce the actuul target trdcuks, we can correlate dat•i tracks of

pirs of nodes to produce target tracks. Targ-et tracks can thun be refined

at a higher level by comparing various two-node results. This scheme sets

up a hierarchy similar to multi-site radar, with the exception that the set

of two-node target tracks are not always independent.

The two-node tracking problem is what we intend to study. We will as-

sume that our tracking system consists of two nodes each independently re-

ceiving azimuth measuremerfts. For simplicity, we will assume that the en-

vironment is two dimensional and thmt nodes and targets are dimensionless

points. All noise in the mt:,ý.urements is assumed to be Guassian and white.

With the specification of our example, we are now ready to explore

anatheinatical details. The first order of' business is to discuss a defini-

* tion of probability for our hypothesis i rues. This is the subject of the

nexL chapter.

-27-
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CHAPrER 4

THE CALCULATION OF IIYPOTHESIS PROSABILITIES3

In order to apply our algorithm to the two-node system, we first need

to define a probability measure on both the data association trees and the

track association trees. With this we can evaluate the strength of vwrious

In hypotheses and eliminate unlikely ones. In this chapter, we develop a

theoretical basis for calculating the probabilities.

4.1- DATA ASSOCIATION TREES

We first consider the data association tree at a single node. Sup-

pose, for the moment, that an estihate of the t:rget state is available at

a measurement time t. We can then form a prediction of the incoming menas-

urement based on this target state estivmate. Intuitively, we would expect

that the closer the measurement is to thi predicted value, the more likely

the measurement is associdted with the target. As is well known, we can

sequentially form target state estimates as data arrives through the use of

Kalman filters.

In a more general setting, we assume that the measurements are the

output of a linear system plus Ln additive noise term. As is well known,

we can formulate a state voriable description of the system in many dif-

"" ferent ways by choosing different definitions of the state variables of the

system. For tho moment, let us assume we have settled on a particular de-

finition for the state of the system. We may writc the (linear) state

i•i~ :.J• a~ i i .4!• :•,.•'"" • ,. i- ..''"" • " :• ' •



equation and measurement equation as

x(k+l) = F(k)x(k) + G(k)w(k)

z(k) = fl(k)x(k) + v(k) (4.1)

x(k) is the state of the system at time k and _z(k) is the measuremoent at

time k. Ue assume that w and v are independent Gaussian white noise ee-
K

quences with
tT

E-w(k)wT (k)) = Q(k)

E[v(k)v (k)] = R(k) (4.2)

Define _(kl) to be the linear least squares estimates of x(k) given data

up to time I and P(k11) to be the covariance matrix of' this estimate. We

can obtain R(klk) and P(kk) through the use of the discrete time Kalman

filter equations as follows:

R(k~k) = 2(kik-1) + K(k)Lz(k) _
N(k+l1k) = F(k)R(kok)

K(k) = P(kjk-1)l T (k)LIl(k)P(k k-1)H T(k) + I?(k)j-I

P(klk) = [I - K(k)H(k)]P(klk-1)[I - K(k)li(k)] + K(k)R(k)K T(k)

T TP(k+lUk) = F(k)P(k~k)FT(k) + G(k)Q(k)GT(k)

(4.3)

Using these equations, we can sequentially update the state estimate

as measurements arrive. One quantity that will be of interest to us is the

so-called innovations sequenceI z(k) - H(k)R(kik-1)

k!
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It can be shown (e.g. LII]) that V is a Guassian white noise sequence
k

given our previous assumptions with

ELV V(T ] = B• = 1I(k)P(kk-)HT(k) TW+ R(k) (4.4)
k k k

We are now ready to derive our result concerning the calculation of

probabilities of hypotheses. Our deviation follows closely the work of

Reid L8). Although Reid assumes that x(k) is the actual target state, the

results are valid for our more general definition of x(k).

Let

Z(k) = (z (k) , m=1,2,...,Mk}

denote the measurements received at time k and

ZI = {Z(1),Z(2),...,Z(k))
denote the cumulative set of measurements through time k. Also, define

Sk kk i , kl,2,...,9k1

to be the cumulative set of' hypothuses just after time k. Each T,

corresponds to a branch on the hypothesis tree.

How, define
i ~k =p k k)

i ikk

that is, Pk is the probability at time k of the branch 1 of the hypothesis
i o

tree given the data through time k (Z"). In actuality, this is equivalent

k-1
to the conditioned joint probability of the prior hypothesis IT and the

data hypothesis for the current measurement °;e, %h Dropping the depen-

dence on past data for notational simplicity, we can use Dayes' equation to

write the relationship

!-,J.'-
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I k-i k-i 1 k-1)
P P ( h Z(k)) = P(Z(k) i r x

(1 )..1

The term r• is a normalizing factor given by

q zT T P(Z(k) 1 11 k-1 k-1 x P(? k-)

If we can find expressions for the first two terms on the righu hand side

of (4.5), we will have a recursive relationship for calculdting probabili-

ties.

The first term is the probability density function of the current set

k-1
of measurements Z(k) given the prior hypothesis r , and the current datug

hypothesis 'h. Assuming that each measurement z (k) in Z(k) is condition-

ally independent, we have

~Mk
k-1 k-k1

P(Z(k) r k-i - 1 •'1
S(4.6)

Suppose that V assigns z (k) as either a false alarm or a new data

track. In either case, there is no a priori information to determine

whether one set of possible me•asurements is more likely than another.

Hence, in these two cases, we will assume that i'r appears as a uniform dis-

tribution

,(k) k-1

- V (4-7)

V is the volume (or area) of thle part of the environment covered by the

node.

If neither czisc above hiolds, then Vassigns zma(k) to either a previ-

ously established uata track (confirmed triiek) or Lo a data track whose ex-

_



k-1 (tentative track). Tentative tracks are ini-

tiated when a new data track is hypothesized in the course of expansion of

the data association tree. A tentative track becomes confirmed if it still

exists when the scan in which it is initiated is identified.

If a Kalman filter is running on the assigned data track, we have

available a current estimate 2 (klk)Rk. Since this estimate does niot

depend on the current measurement, we have
k-1 k-1

((lk-) k p{_fl(k)-H(k)R Tg ,Ih} (4.8)

The last is the conditional density function of the innovations of the

filter, which has a normal distribution. Hence

P(z (- I k I..•U (k) -H (k) Bk ,1B] (4.9)

with

B H(k)P(kik)HT(k) + R(k)

1T-1NP) exp(-7,Q P V) (4.10)N((/,P)=

where n is \ i~ e sion of the innovation vector x.

The second term on the right hand side of (11.5) is the probability of

the current data association hypothesis q' given the prior 'hypothesis 1 k-i

has three items of information:

"c) Nlumber - the number of measurements associated with prior data

tracks (NDT(h)), false alarms (N 00) and new data(h))

b) Configuro•tion - the partition of' thme set Z(N) into three subsets

corresponding to prior targets, false targets, and new targets.

c) Assignment - the assignment of' each measurement associated with

prior data tracks to the specific sourc,.

- 32 -
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In addition, the prior hypothesis gives 11TGT(g), the total number of

data tracks, confirmed and tentative, implied by that hypothesis. Thus it

NDToiTGTl •h implicitly assumes that measurements were not received from

some of the prior data tracks.

k-1

To find the probability of the numbers NDT, 11FT and NNT wiveei we

make the following assumptions. First, the probability that a target will

generate a measurement which is actually received by the node is a constant

(called the probability of detection). In other words, the reception of

a measurement can be described in probabilistic terms as a Bernoulli trial.

If we further assume that the detectability of each target is independent

of the others, and that each target can only generate one measurement in a

given scan, then we see that N is a Bernoulli process and its distribu-

tion is binomial.

Second, we assume that the number- of false alarms follows a Poisson

distribution. This is an assumption often minde in tracking problems. It

makes intuitive sense, because while the appearance of false alarms is ran-

dom, in many cases they have a constant average rate of appearance over

reasonably lengthy periods of time. We will also assume the number of new

targets follows a Poisson distribution. The assumption is much harder to

justify. In order Lo make it reasonable in actual practice, the average

rate of new target appearances must be adjusted much more often than the

rate for false alarms.

With t'iese assumnp, ions, we have

_33-
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TG

P(N N k-1 ((-) (N1rGT- DT)i ~tDT U•Ti'ý'FT rl 11 D IT
) 1PDTID

xF4  (PFTV) FN (Pj•V) (4.11)
FT IT

where

SPD aprobability of detection

FT = density of false alarms

•NT =density of previously unknown

targets that have been detected

n e4
FnW = n
n n1

Now, the total number of measurements is

l! III = N•.I + N T + 14l
k DT FT N

The number of different partitions of the t", moasurcracnt3, given the

numbers NDT' N FT' and NT is

Assuming that each configuration is equally likely, the conditional proba-

bility of a specific configuration is

P(Configuration DTNFT, N 4)

(4.12)

Given the configuration, the number of possible assignments of the NDT

measurelnents to the N TGT prior data tracks is

S"- - 4t
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Assuming that each such assignment is equally likely, we have

P(Assignment 1 Configuration) TGTDI
lTGTI)

The joint conditional probability of NDT' IjFT' N N, the configuration, and

the assignment is the product of (4.11), (4.12), (4.13), and is also the

conditional probability of Oh' Thus we get

k-1 NFT NT! NDT TGT'tlDT)
P()h 9 MkI x P D (1-PD)

k

x F NFT (PFTV )F11NT (PUT"

If we now substitute (4.6), (4.7), (4.9) and (4.14) into (4.5) we obtain

N !N I N (N N1 FT NT DT TGT D'rPi • Hk I PD (-D)NT-D)

FrF (PFV)Ft.L.pir4TV)
FT FT T

. DT
x I; N~z In(k) -Iik) W 2 in PkU ilFT+NIIT (4.15)

The measurements have been implicitly ordered in the above so that the

first N of them correspond to those assigned to prior data track3 by
• Substituting into (4.15), simplifying, and incorporating constants

in tie finally get

2P k 1P DT(I 1 p ( G DT PNFT P 1UTi) DFT IIT

NDT

1 [I JLz (k:)-IU(k)R hi P
m=1 -- : ' In (4.16)

Note that this is independent of V.
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As mentioned by Reid, this equation is easily implemented in the

J.i; framework of tree expansion. Prior to expansion, all prior probabilities
N

TGTare multiplied by (1-P . Then, as each branch is created for a

specific measurement assignment, we multiply the probability of the prior

hypothesis by either 3FT' pNT or 'D[ k)- , amdependin)-H~k) JM- depending

on the assignment. The probabilities can be normalized after tree expan-

sion, although this is not strictly necessary since only the relative pro-

babilities are important.

We can take the negative logarithm of (4.16) to obtain a recursive

likelihood equation which is additive rather than (nultiplicative. We can

write this recursion as follows:

k-1
1) To each prior hypothesis r' , add to its likelihood

-•TGT( I ( -D)

2) As each measurement is assiigned we add L, where

-InIFT for false alarms

i=-lnpT for new datd tracks

1 T -I n 1
-2V B V + -1n2W + -fln5 B - lnPD + ln(1-FD

for prior data tracks

We see, then, tnat we need to specify three items of information in

order to use this definition on the ddta associition trees:

a) The state variable rcprvaentation (4.1)

b) The fulse ularm density PFT

e) The new target density PUT

- 3I -



We next consider track association trees.

'4.2 - TRACK ASSOCIATION TREES

Track asaociation trees behave somewhat lifferently than data associa-

tion trees. Here we hypothesize various combinations of data tracks from

different nodes to produce possible target tracks. Assuming that each such

combination produces a unique target track, we see that these trees have

constant depth. Wihen a new data track appears, new nodes are created by

correlating the new track with existing tracks from other nodes. The pro-

cess is a breadth expansion, rather than Jepth because the new hypotheses

are not conditioned on the hypotheses already in existence. There is no

need to consider false alarms or ne targets at this level; these have al-

ready been determined at the data association level. We thus need only a

method of distinguishing those combinaticns of data tracks that correspond

to real targets. Those that do not cormspunod to real targets are termed

ghosts.

The problem in setting up a general definition of probability here is

that the probability of' each node must be evaluated over a time interval.

This differs considerably from the nodes in data association trees, whose

probabilities are evaluated at points in time. It' now nodes are added to

an existing track association tree, then the probabilities of thc new nodes

will be evaluated over different time intervals than the older ones. The

question then becomtes on- of comparing these probz 1bilities.

! -*' J7
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Instead of computing probabilities, we willi compute a likelihood func-

tion for, each track hypothesis. Suppose we Lire using the data tracks from

n nodcs to form ti track hypothesis. Define z(k) to be the augmented mess-

ureinient vector, consisting of the measurement vectors of the n nodes. We

can model the problem as follows:

x(k+l) A(k!)x(k) + B(k)w(k)

z(k,e) C(k)x(k) + v00)

x(k) here is the target state. The parameter e denotes the dependence of' z

on the track hypotheses. To find the raiost likely hypothesis, we need to

maximize the likelihood function for (3.

The problema in this form resembles the multiple model identification

problem (see Van Trees [112). Usin6 thla model, we can obtain a recursive

relationship for the log likelitijod furictiorm of H. Time r 'sult is

1 -1 T
L(O,k+l) =L(e,k) + (k 4 )B (k,O)(/ (k,E))

where M'(,O) is the innovations at time k obtained from a Kalmnan filter as-

sociated with the track hypothesis identified with (3, and B(k,e) is its co-

* I variance. With this relationship, we have a meuns of' choosing the most

likely track hypothesis.

The initialization of a track hypothesis occur.,; when a new data track

appears out of tha data association process at some node. The initializa-

tion becotnes somewhat complex when the measurements are time delayed. In

sorte cases, it may not be possible to initialize the correct track hy-

$ - pothesis. For instiance, consider the situation in which a target is closer

-t a *ri de A -thari *ý.nother iodci [B. BOCcuse of' the sianal propagation 'ay,
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the meisurements at A will be more recent then those at B. Presumably,

node A will detect the target first. If we attempt to correlate the new

daLt track with existing data tracks at B, we see that the uorrect correld-

tion will riot be formed, since 13 has not yet detected the target.

With thi5 in mind, we present the following scheme for the construc-

tion of track as8ociation trees. When a node initiates a new data track

ti. ough its data association process, a new track association tree is also

created. We attempt to initializo correlations with existing data tracks

from the other nodes for a given length of time. After this period, no

more attempts at initialization are made. In this manner, the correct

track hypothesis should be formulated with the last node to detect the tar-

#et. In order to compare hypothest.s on different track association trees,

we shall use time averaged values of likelihoods computed in the manner

described above; i.e. we shall use L(k,d)/At, where At is the

The utility of the above method will, of cour"se, depend on the track-

ing system. In some cases, it may turn out that differentiating between

ghosts and targets is virtually impossible. We then must either bring to

bear other information in the system to distinguish the real targets, or we

must continue to track the ghosts as targets. These issues will appear in

"our discussion in the next chapter.

'4•- - S3UMHARY

In this chapter, we nave presented a formulation for the calculation

of probabilities of hypotheses on the date association trees and the track

.S9
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association trees. Armed with this knowledge, wt can. now proceed w':"th the

applic~ition of the algorithui to tha two-node systemu. The necessary

mathematics are developed in the next chapter.
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CHAP'ER 5

STATE SPACE MODEL3 FOR THE TWO MODEE SYSTEIM

In order to apply the formulation presented in Chapter 4, we need to

develop state variable representations to implement the necessary Kalman

filters. Our goal in this chapter is to develop the appropriate state

space models for both the date association process and the track associa-

tion process. Although we wish to obtain filters that perform reasonably

well, we do not undertake a thorough examination of these state space

models. As a consequence, some important issues are left unexplored. How-

ever, our main purpose is to (,imonstrate the tracking algorithm developed

earlier; we do not propose to derive the optiMuM tracking filters for the

specific tracking system under considtration. Hoente, we content ourselves

with a less detailed, out adequate, arnýiysis focused on the data associa-

tion aspect of the problem.

5.1 - STATE SPACE MODEL : TH. DATA ASSOCIATION FILTER

The most natural way to define a state variable for this problem is

the target state as defined in chapter 2. It is easy to see how the meas-

urements are related to the target state. In Figure 5-1, 16 is the noise-

less measurement (the acoustic azimuth) at time k. because the speed of

sound is finite, this means that 6 corresponds to a target position at time

t sometime in tho past. (This is called the acoustic target position to

distinguish it from the true targut position Lt time k). The relationship

-41 -
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between k and t is

k= t÷- (+.1)' C

where 8 is the range to the acoustic tarset position ( the acoustic range)

iind c is the speed of sound. fNow, let P be the acoustic azimuth (at time

k ) when the acoustic target position is at the closest point of approach

(CPA). The time the target is actually at CPA is to. Let Y be the angle

around CPA - that is the angle betw~een the line to the apparent target po-

sition P and the line to the CPA. We see that

~:I .2 2

Let us assume that the velocity v and the heading is constant. The dis-

tance between P and CPA is

d v(t-tO) (5.3)

A negative distane implies the target is approachin, CPA. We also have

d = rtanY (5.4)

where r" is the distance to CPA. Thus

v(t-tO) rtar)Y (5.5)

or, substituting for t and tO,

v(k R k + r) rtanYc 0 c
vR vv

tanY + - = -(k-k )+or r 0 c

But R = rsecY, and so

tanY + -secY = (k-k + -
cr 0Oc

Solving for Y, and substituting into (5.2), we finally obtain

4 - Lu -
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2vv 2g2
1 (k-k 0 \+1 ÷.1+\Ic) + r- -k-i

0

• ' V
2 (5.6)

The quantities ko, , andp provide full knowledge of the target state.

Hence, we could choose these to be the state variables for the system

model.

There are two major difficulties in using a state model in this form.

First of all, it is difficult to obtain an estimate of P until past CPA.

Because the governing equation (5.6) is nonlinear, we must resort to

linearized version of the Kalwan filter (called the extended Kalman filter

or EKF). The quantity P is crucial for an accurate linearization. The

best way to obeain an estimate of p is to set up a bank of filters, each

conditioned on a different value of p. Based on the performance of these

filters, we would then apply some sort of decision criteria to selsect the

best filter. This has been done by Hebbert 15] for tliu ca6se of a single

target, no system noise, and an infinite signal propagation speed. In our

case, there will already be Several Kalman filters running, and replacing

each of these with a bank of filters increases the memory and computation

enormously.

The second major difficulty In using the full target state in our

model is Lhe resulting week observability of the system. Theoreticd' we

can obtain information about every state variable from;i any given measure-

minent. However, we get a relitively lLrge amount of information about a

particular state variable only ot the expense of the other state variables.
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Essentidlly, the azimuth d gives one position coordinate in a two dimen-

sional system. lie would expect, then, that we could not obtain substuntial

reductions in tile uncertainty of both position coordinaites is shown clearly

in Figure 5-2(a-d). x is defined as the position coordinate parallel to a

Siven target's trajectory, and y to be position coordinate perpendicular to

the trajectory. v and v y are the velocities in the x and y directions

respectively. Figures 5-2(a-d) displLy the square root of the variances of

x, y, vx, and vy as a function of time. for a typical target trajectory.

The variances are the diagonal elements of the error covariance matrix of

an EKF tracking x, y, v , and v . The filter was always linearized about

the exact trajectory. The zieLsurement noise and the system noise in this

filter were set to U (i.e., Q=R=O), and the initial covariance was set to a

very large value. The filter thus starts off with essentially no a priori

information, and all reductions otf th-e covariince are solely due to the in-

corning measurements. The covijrice matrix obtained is known as the

Cramer-Rao lower bound, which implies th-it no track~ing scheme can attain

mean square errors less than thost shown here. As can be seen, there is a

rapid reduction in the variance of v while the target is still far from
y

CPA (which occurs at t=45 seconds). Tile variance of vx stays relatively

high until the target approaches CPA. Thus, in the region approaching CPA,

the full state tracker is at best weakly observable. The large uncertainty

in aL least one coordinate in this region could result in a poor lineariza-

tion and filter divergence. Since we wish to perform data association in

"this area, we must reject the full targe'. state as a model.
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We thus must define our stute viiriables in another way. One method is

miake a Taylor series approximation for 6, i.e.,

T2
6(k+T) = j6(k) + Te'(k) + 6--'"(k) + T-6'''(k) + ... (5.7)

Our problem is to determine the appropriate number of terms to retain in

the expansion. A typical plot of the acoustic azimuth vs. time is shown in

Figure 5-3. Obviously, a linear approximation is not very good over the

entire range, so the term 61'' should at least be retained. On the other

hand, retention of too many terms can lead to a rather sluggish filter with

a relatively high average error covariance. In addition, computation and

memory requirements increase with the number of state variables. There-

fore, we restrict our attention to two possibilities: the three-state vec-

tor

/6(k)

and the four-state vector

6'(k)

x•j(k) 611(k)

"(k)/

SOur system model is

x(k+T) = Fx(k) + L(')

* (5.8a)

where
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"1 T

0 1 T = XA(k)

0 0P 0 
1

1 12 1
~~ T • T

0 0I1 T X(k) ( aB(k)

0 0 l0 1

(5.8b)

We assume that w(k) is a scalar, zero-mean, white Guassuan noise process

with variance Q. Noise is entered only through the highest derivative for

:z(k) = Hx(x) + v~k) (5.9a)

:. with

i~1 0 0 O j 1 (k) : _B(k) (.

Sv(k) is a scalar, zero -mean,white Gu~ssian noise p*. •;ess independent of

w(k) with variance R.

The above model does have a serious drawback, however. When the ratio

-- is large, correspcl ding to small range and high velocity, the actualr
* -curve approaches a step function, and its derivatives approach singulari-

ty functions. The model is very poor in these situations. In fact, the

filter will not react as fast as the changes in these derivatives, and it

may well lose the data track. Our solution to this difficulty is to bypass

it, pointing out that it is easily detected from an azimuth history, and

hence special umechanisms, which .4ll not be developed here, can be invoked

• !II '.%• .,• i ,.IL:.•• ........ "
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to deal with it. Thus, we will c isider only target trajectories with rea-

3onably -;mall values ofv

In order to properly Choose a good model, we test a number of possible

values of Q in both the 3-state Linu the 4-btate filter over a range of typ-

ical trajectories. The trajecor10s were produced by varying the velocity

and the distance to CPA, the two controlling parameters. Figure 5-3 shows

the various combinations that were used. For each hypothesized model, a

set of data from each target was produced by adding measurement noise of a

stanrdard deviation of 30 to the cxact acoustic azimuths. The Kalman filter

corresponding to the imodel was run separately on each data set, and an

average squared error (ase) between the true acoustic azimuth and the

filter estimate was computed for e4eii track. An overall aso was computed

for each filter.

The results of the above M1ontL Carlo siaiuliation are shown in Figure

5-4. It turned out that filter runs from two of the trajectories produced

average squared errors that biased those computed from other trajectories.

The first -ible shows the results if these runs were retained. The second

run givezL aL computations if' these runs are eliminated froii consideration.

As can be seen, the model with the minimium squared error is different in

each table. The erlbrs are close, howa3vc-r, indicating that there are

several models that will give nearly the same performance. We choose the

[ . .model indicated by the second table, because all of our example target tra-

jectories will have - < .1. Thus, we choose the three state filter withr

Q--0.001 us our data association filter.
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.0003 9.08 6.49 4.35

.0001 1O.64 8.44 5.88
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a .00001 6.30 4.85 4.42
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.000001 8.86 b.58 5.58

.0000003 7.97 6.48 5.51
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One last itemn to c.onsider is tte initialization procedure for the Kul-

man filter based on (5.8) and (5.9). Assumiing the model is reason1ably ob-

servable, the filter will be relatively insensitive to the initial state.

Hrowaver, we can suggest a natural procedure. Far fromn CPA, the acoustic

azimith will change vcry slowly. Thereforw, we initialize the first comn-

ponent Of the state to the first measurement received. The other com-

ponents, which are derivatives of' the first, are set to 0. The initial er-

ror covariance can be chosen somewhat more arbitrarily, since error covari-

ance approaches a steady state value relatively quickly, with small values

of Q and R. For- the model as determined above (R=9.O,Q=0.OO1), it turns

out the covariance reaches ste,ýey state after approximately n measurement

updates.

With the above system model anid initialization procedure, we can con-

struct the Kalman filters necessery to implement the recursive probability

fortaula developed in the chapter 4I. This, in turn, gives us an implementa-

tion for the data association trees. Wie noW turn to the problem of con-

structing system models for use in the track association filters.

5.2 -STATE SPACE MODEL :TARGET TRACKING FILTER

Developing a system model that produces a good filter to estimate the

full target state from the data tracks of the two nodes is a much more dif-
p4

ficult task. Conceptually, we can track the target jtate in two ways. We

can track the acoustic position and velocity, or w40 can track the true po-

sition and velocity. We shall investigate the form~er method first.
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Consider Figure 5-5. Assume that the target has u constant velocity

and constant heading. The node receives measurement 61, at time k1,

corresponding to a true target position at time t 1 . The relationship

between k1 and t1 is given by (5.1):

* 1
k1 M t 1 +-

R is the range to the acoustic target position. At time k2 , the node re-

ceives the measurement 6.2, and we have

+.2k 2 = t 2÷"

Thus,

R R1
k2 k1 t -t (5.10)
2 1 2 1 C

Even if we choose k2 -kl, the sampling period, to be constant, the time

difference between consecutive acoustic positions is constantly changing in

a nonlinear fashion. Thus the system equation is nonlinear, even though

-the target trajectory is perfectly linear.

It turns out that the equations of the EKF for this model are very

complicated. They turn out to be very sensitive to linearization. We can

get an idea of this by reasoning as follows. While the target is approach-

,• ing CPA (during which, it is hoped, the target will be acquired), the

acoustic range decreases. According to (5.10), this means the time differ-

ence between acoustic positions is greater than the time difference between

the corresponding rmeasurements. Now, since the system equation describes

the time evolution of the state, its nonlinearities will affect the time

update equations of the EKF. One would expect, then, that the effects of

these nonlinearities would be worse than expected for a constant (known)
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update period, at least while the target is approuching CPA. Indeed, it

turns out that the filter is not only very sensitive to linearization, but

that enhanced time difference between acoustic positions causes the error

covariance matrix to shrink prematurely, reducing the influence of the

current measurements.

Another difficulty in this approach is in the incorporation of the

measurements into the filter. As discussed later, it turns out that the

best method for measurement update enters measurements from each node in-

dependently into a single filter. At any given sampling time, however, the

measurement from one node will not correspond to the same acoustic position

as the measurement from the other node. We thus have the difficult task of

* performing two time updates, corresponding to each pair of' measurements.

Our second approach is to track the true target statu. In this case,

the system model for a linear trajectory is also linear:

01 1J
x(k+T) 0 0w00

0 0 0 w (5.11)

T is now exactly equal to the sampling period. Because of this and the

fact the equation is linear, we do not have the sensitivity in the time up-

date as we did in the previous modcl.

We should point out that the derivation of' the current measurements

from the current. Lrget state does involve a degree of approximation, as

the actual signal received i•t time k was produced by the target at time

k-c In the case of no process noise, (i.e., no tarrget deviations from a

wC
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constant course), this is not a formal difficulty as the state variables

contain enough information to allow a position to be extrapolated backwards

in time. Formal difficulties arise when the process noise is assumed (as

it must be in this case for practical reasons), but the approximation that

current measurements can be derived from the current state is minor com-

pared with other approximations; e.g., ignoring altitude, multipath signal

effects, etc.

We now turn to consideration of the measurement equation for the sys-

ter (5.11). There are three ways to incorporate the measurements into the.

filter. One way would be to combine the azimuths in some fashion to form

position measurements. This procedure is called urossfixing, dnd we would

have a linear measurement equation. As discussed in the next section, how-

ever', the crossfixing is not always succussful, and we could thus lose in-

formation for updatind target state estimates.

The other two rcthods use the givcn merE surermecits from the nodes in-

dependently. The first method would identically initialize two filters,

and then run each filter on a different node's mea3urements. The estimates

of each filter could then be combined, taking into account the common ini-

tialization. The second method would be run one filter and incorporate

both measurements. Theoretically, both approaches should produce

equivalent results. As pointed out in thc last section, however, we do not

obtain much of a decrease in the variance of the position coordinate per-

pendicular to the trajectory. This implies that this coordinate is rela-

tively unobservable. We wil thus obt;i~n large urrors in tue estimation of

this component, wliich will in turn givc poor linr:arization. Without a good

I? -M



linearizations, the EKF becomes unstable. For these reasons, we will use a

single tracking filter that incorporates mea-surements from both nodes in-

d ependently.

We now derive the measurement equation for the system (5.11). Con-

sider the Figure 5-6. U is the true target position with coordinates (x,

y) and P is the acoustic position with coordinates (Xpyp is the true

target azimuth and 6 is the acoustic azimuth from node S. lNode S has coor-

dinates (xsYs). Let t be the time difference between P and U. Then the

distance between these two points is vt, where v is the velocity of the

target. In uddition, t must also be the travel time of the signal from P

to S. Hence, the distance between these points is ct. The angle 0 is as

shown, and is easily seen to equal •-i, where K is the heading of the tar-

get. By the law of cosines we see tnh

(ct)2 = (vt) +P I vtpcosa

where 0 is the true target range. Solving for t we get

t oVCos+ \ac2%-Vsin (1r22 (5.12)

Now, let v be the velocity in the x direction, and v be the velocity in

the y direction. TnLn we have

l 15. 13)-1 X

tan- (5.1)vy

Since e=i-•, we can derive the following using trigonaometric identities:

1 iL~1I --&ThA -
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x v x+yv y

cost)5.6

xv -yv

sine 5.6to
Substituting into (5.12) and simnplifying, we get

122 2-(XV~ ~ -y +koa_(xv -yv

Since ku and v are functions of x, y, v , and v~, (5.17) gives t completely

in terms of the true target state. lie now have

x X-tvP x

and

x X-~tv
6 ta Y? all y-t~v

y

* , Thus, our measurement equation is

Z~k) tan-x(k)-t(k)v x(k) ()(.9
z~k) X w-k) (5.19)

whiere w is the noise term and t is Siven by (5.12).

Since this equation is nonlinear, we will kheve to use tin EKF. For

this, we need Lhe vector deriva~tive

The equations for the aibove pairtijl derivarivesi c&~n be derived by straight-

forw~ird though tedious, calculus. The results ar



WX 2 2
xP+yp

at
a6 xp+ (-yvx+xv Y-y)

"r 22xPy

2 2

tx P+(-yv 4x +Vy)v

yy

where

xc +V (Yv x-xv

at x

C~-V2

yex 2 Vy (v Y) y

at -x + D ~ 2

U 22

X(yv -xv
y + ) + 2v t

yy

y -V

c ( x y (6~i.22)

Thte equations for the EKF a~re of' exactly ch savie 1'orin as C4.j), except thiLt hure

WIL me~.tsurement. ma~trix is

dx
H (k)( =-1

I,'X
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The only thing left t-o specify here is the initialization procedure.

We will initialize the position and velocity of the filter at one point in

time. This will be done using the smoothed estimaites of the azimuths and

their derivatives at each node. The procedure involves crossfixing, which

is the topic of the next section. A poor initialization can cause problems

in two ways. If th• filter is initialized when the target is far from CPA

of both nodes, the trajectory will be unaffected by the measurements for a

relatively long period of time. The errors in initialization will thus

grow with time. In addition, it' the estimated target position is much

closer to one of the nodes than the true target position, the filter will

give greater weight to the measurements from that node than it should.

These effects cascade, resulting in filter divergence.

With these points in mind, wa formiulote the following restrictions on

the initialization procedure. First or all, we use two azimnuths to calcu-{0

late u position only if their dift'erence is rea•re" than 600. This ensures

that we do not iziitialize wlhen the acoustic position is too far away.

Second, we artificially adjust the initial hlading so that it points toward

"the midpoint of the line segment joining the two nodes. This helps keep

the initial position away frovi either node. This procedure, of' course,

works well only for trajectories that pass between the nodes. However,

this ib not much of a limitation if w• consider the two nodes as part of a

larger network. In sueh a system, it is ret.sonabie to Lssume that the in-

terestina targeLs will eventually pass between somfe poir of nodes. In ad-

dition, a node pair m•y receive an initial state for a target that is being

tracked by other nodes. This proceJure, called tardet handoff, is impor-

- WIt -
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tant in a system with a large number of nodes. In these systems, initiali-

zation is required only if data tracks cannot be associated with a priori

targets. This reduces the'number of initializations a node poir must per-

form.

5.3 - CROSSFIXING AND NON-CLASSICAL GHOSTS

As mentioned in the lost section, crossfixing is the procedure for ob-

taining position measurements from the azimuth measurements of the two

nodes. For time-delayed measurements, the process is more complex than

simple triangulation. Suppose that time targec position is further away

from node A than node B. The signal will thus reach B first. We cannot

obtain a position using this measurement at B because the corresponding

measurement at A has not yet arrived. On tha oLhar hand, if we use the

current ineasuremeut of A, the corr'esponding'ineasurement of B is a past

measurement. Thu3, crossfixine can only produce acoustic positions

corresponding to measurements from thu node farthest away from the target.

Given the current measurement from one node, we can divide the crossfixing

operation into two steps. The first step Jetermines the measurement and

its time of reception at the second node that corresponds to the same

acoustic position as the given measure:nent. The second step is standard

triangulation. Since the first step is the real problem here, we will in-

vestigate it here. The derivation follows [4].

Consider Figure 5-7. Suppose thut we receive, at time tB the azimuth

61 at node b1. We wish to find the mensure:ment dA received by node A at

time tA that corresponds to the sa:me acoustic position :.s d Let

*-.1b5 .
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6t = •*tA (5.23)

and define t to be the W~e at which the trud target position was the samie

as the desired aooustiQ pc ition P. Then

6t = (ts-tp)-tA-tp) (5.2t4

Now, -tP is the travel time of the signal between P and B, while tA-tP is

the travel tine of the signal between P and A. From the geometry of Figure

5-Y, the following is evident:

A sinh cosh=inA' "°SA (5.25)

S h h
B sindB' =°S6B (5.26)

(Remember 6. is a negative quantity in this figure). Also,

1.
tA- t = A (5.28)A

t -t (5.29)

From (5.25) and (5.26) we geL

•. co s6 A
3B A sin(6A_,) (5.30)

tASubstituting this into (5.2'?) and solving for 1A we get

d cosiB

A sin(6A_•B) (5.31)

t IAlso,

d cos6

(5.32)

Using (5.2L1), (5.23), (5.29), (5.31), ind (5.32), we finally get

t A . s - COsB

6tAt
- 67 -
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: (5.33)

Although we have used a restricted- geometry here, the result is more gen-

eral. The equation is valid, of' course, only in the range where the me3s-

urements 6 and 6 intersect; namely,A B

IT .2III w< 6B < • "< 6A <
2 B 2 -- A,

-2 B - 2 A B

For 6 = -*, the acoustic position is indeterminate.
B

Now, suppose that we have the past history of received measurements at

node A (i.e., the azimuth vs timw curv; for A) as in Figure 5-b. Using

(5.32) we u,,n convert the single ous,ýrvation 6 a6 node B into a curve of

possible 6 vs 6t and plot it on tlw s.i.ie scale (Figure 5-9). This curve
A

is called the refleeted observation curve. The intersection of these two

curves gives the desired measurement vi ýn.nd its reccption time tA A

It turns out that multiple intersections of' the two curves is possi-

ble. This occurs when the target trajectory passes between the two nodes.

Figure 5-10 shows an example. At time instants one second apart we have

taken tihe noiseless measur'ements at B, and obtain all possible acoustic po-

sitions assuming a full past history of' noiseless meisurements at A. The

target velocity was 150 metvrs per second at a heading of 135 degrees from

j north, and the distance between A aud B is 5000 meters. In the figure, the

real &coustic trajectory is obvious. Tlhl,:. fal.se positions form, a track thut

flies rrorn the pt:rpendicular bisec:tor of the linei segmcnt joining A and B

-, M5- 11
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to node A. This behavior is exhibited by all sueh false trucks, and they

occur only on the inuoming path. We call these tracks nion-class3icl

ghosts, to distinguish tihemr from tile ghosts of Chapter 4.

A heurestic procedure can be developed which eliminates, for noieless

measurements, most traces of ghost tracks. Looking again at Figure 5-10,

we aeu thet the ghost track is concave downward. (The track begins at the

bisector anad heads toward A). Since the targiet heading is 135 degrees, the

acoustic azimuth increases with time. However, succeeding positions along

the ghost track requires the acoustic azimuth to decrease with time. Thus,

the measurements of A that determine the ghost track forms a sequence that

goes backwards in time. At each point in tiiie, then, after crossfixing has

been completed, we eliminate tht- post history a' A thut occurs prior to the

earliest crossfix, then the rest of thd ghost tri.k will be eliminated. If

it is riot, the ghost track remait. Figure 5-11 shods the results for this

example. As can be seen, only part of the ghost track is eliminated.

We can eliminate the rest of the ghost by observing that this portion

of the ghost track must correspond to the lter crossfix, else it would

have been eliminated. We thus keep only the earliest crossfixes, which

correspond to trac real acoustic positions. The result, with a few minor

adjusta:ients that need not concern ua here, are shown in Figure 5-12. Note

that the procedure makes one expected error -- thu first point at which the

ghost is the earliest crossfix.

In the noisy case, doghostirng is somewhat more difficult, primarily

because crossfixing is not alw~ya successful. An imporLanat thing to notice

-'12

tA



I loo e I.. go,

00

* WY V

Vc

8Y



'Ai



IS

iui



in Figure 5-12 is the gap that occurs in the region where the ghost track

and tile target track intersect. In this region, the reflected observation

curve is almost tangential to the azimuth time curve; the intersection

points are close together. This is shown in Figure 5-13 . In oases like

these, it is very difficult to detect the intersection points. -This is why

the gap appears in Fig. 5.12; the curves were almost tangential and the

crossfix failed. The situation is even worse when the measurements are

noisy. The gaps can be many time-sampling periods long. In addition to

this, the noisy data can cause random crosfixing failures any-where along

the path. Because of this loss of information, we choose not to use posi-

tion measurements as updutes to our filters. We will, however, use

crossfixing in initialization.

5.4 - SUMMARY

In this chapter, we have developud slate vuriable descriptions neces-

sary for the construction of Kalman filters for both the data association

trees and track association trees. We also discussed the operation of

c rossfixing and non-cl~ssical ghosts. In chapter 6, we shall present some

results for this implementation of our trackina ilorithrn.

S- 7( -
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CHAPTER 6

RESULTS

In this chapter, we jrresent demionstrations of the filters developed in

Chapter 5 and their application to the tracking algorithm. It should be

pointed out that these examples only hijhli~ht basic chracteristics. In

order to evaluate the strength of the filters, Monte Carlo simulations

should be conducted over a wide range of target scenarios, and performance

statistics ,rust bL Jcfined and computed to facilitate the evaluation. Un-

fortunately, due to time constraints, we were unable to give a really

thorough performance evaluation. We will, however, present some results

that illustrate the characteristics of the filtcrs and the algorithm.

All of the demonstrations in this chkipter oere done by computer sirau-

latlon. The simulations, is well as the algorih:n itself, was written in

the C language and rutn on a PDP-11 computer.

In the first example, a Mlonte Carlo simulationi was run on the data as-

socintion filter to provide some information on its performance. The

* parameters of the example trejectory are those of Tardet 1 in Table 6-1.

* The node A at which the dnta asisociation is cdrriod out is positioned at

ithe origin. A set of noiseless acoustic azimuths wi:s SenerAted for A, as-

sumind a sampling period of ontL siecond. Only azimuths that corresponded to

angles around CPA that were between -'70°0 and '0 were retained. From this

ajzimuthal act, 50 sets of noisy dJuta were eenerated by adding white Guas-

si3a noise with a sta•adard dcviýition of Y° rhe data association filter
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was run separately on each set of data. For each point in time, an average

mean square error was calculated over the 50 data sets. The results are

shown in Table 6-2. Clearly, the filter performance is best far from CPA,I
when the azimuth-time curve is practically linear. As the acoustic data

approaches the CPA angle, however, the azimuth derivctives are in flux, and

performance degrades. Still, the overall average squared error was reason-

Sable, about half the variance of the measurement noise.

The next example is an excellent denonstration of the capabilities of

the data association process in a two-target environment. The trajectories

are those of Target 1 and Target 2 in Table 6-1. Again, the reference node

A is at the origin. Figure 6-1 shows the exact acoustical data generated

by these trajectories. Note that tha curves intersect twice, and that the

angles of intersection are somewhal s:nill, Tnese regions are potential

trouble spots for the data assouiation process in the presence of noise.

Thu node must be able to distin8uiLh t.m: noisy daita so that they can be

tracked. Otherwise, the target traclcinZ process will riot be good. Figure

6-2 shows the noisy data after the data association, while Figure 6-3 plots

the filtered estimates. Although a few measurements around the curve in-

tersections points are mixed up, the prucess manages to lock onto and track

separately the two svts of' data.

The next example demonstraItes the target tracking filter. A second

node 6 is placed at the point (5J00, 0). Noisy sets of data are generated

for both A and U from thu tr••j:ctury of' TargLet 1. Tile reulting target

track, combiniiig t,• two datla triieks, is shown in Fig~ure 6-4. Because of

thQ rastrictions imposed in kl,,tion 5.2, the tiirgct was well Hlon, the
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trajectory before the track was initialized. ThQ plot is a bit misleadinK,

in that the points of the track do not lie in sequential order following

the true trajectory. This because the estimate of the current target state

is updated by current measurements, which correspond to earlier states of

the target. There always exists an uncertainty in the time of' occurence of

t he earlier states; hence, one would expect consecutive estimates would not

necessarily follow a sequentially follow the true trajectory.

Our last example demonstrates track association with the data tracks

of the second ExalaplC. Figure 6-5 shows the results. The ghost tracks

(i.e., the incorrect crack associations) turned out to be not much of a

problem. One ghost did not even initialize a track. The other ghost in

due course surpassed the speed of aourd, and the algorithm automatically

rejected it.

The peculiar beh;avior of the crack of Target 2 is easily explained in

terms of the initialization procedure outlined in chapter 5. The initial

trajectory was set to head towards the point (2500,0). The track more or

less held this direction until the target approached CPA. Then the meas-

urements from both node.• began to have effect, and the track was subse-

quently pulled back around the actual trajectory.

As we mentioned earlier, the examples only highlight the major charac-

teristics of the tracking allorithm in the two-node system. We did provide

some statistics on the performance of the data association filter, pointing

out its weakn.sses, 6nd demonstrated its success in resolving long termb am-

biSuities. Ie also demunstrtLed the full target. state filter and the track

- '(9 -
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association process. llow.jver, much work still rcemains to be done in order

to fully test the tracking alorithm. ;easurermientz of performance of the

full stoe tracker need to be evaluated. Also, the performance of the data

associdtion fil~er as a function of the raie of false alarms should be in-

vestigated tc provide 4 measure of robustness.

The application of these ideas to larger distributed networks is also

a further area of .,e.. -,h that must be investigated. This would probably

require a theoretical structue that comabined various local target tracks

into global tracks suitable for the users of the tracking system. The ef-

fect of communications, problems with maneuvering targets and target han-

doff procedures are other areas that will require careful research. Fi:•al-

ly, we mention the importance in testint tl.e alsorithm in a real world sys-

tem to investigate its real utility.

What we have attempted here is. to sho;i Li,:t our tracking algorithm

does perforr, reasonably well in tracking multiple tiargets and resolving am-

biguities in data vs3ociations. It is hoped theit it will be a useful tool

for future invcstigalion into distributecd processing tracking systems.
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